Greatest Common Divisor (GCD)

What is GCD?

The Greatest Common Divisor (GCD) of two numbers is the largest positive integer that divides both numbers without leaving a remainder.

Examples:

  • GCD(48, 18) = 6
  • GCD(56, 98) = 14

Recursive Idea (Euclidean Algorithm)

The Euclidean algorithm is the most efficient recursive method for GCD: gcd(a,b)={aif b=0gcd(b,a%b)if b≠0\text{gcd}(a, b) = \begin{cases} a & \text{if } b = 0 \\ \text{gcd}(b, a \% b) & \text{if } b \neq 0 \end{cases}


Java Code

public class GCDRecursion {
    // Recursive method to calculate GCD
    public static int gcd(int a, int b) {
        if (b == 0) {
            return a; // Base case
        }
        return gcd(b, a % b); // Recursive case
    }

    public static void main(String[] args) {
        int num1 = 48, num2 = 18;
        int result = gcd(num1, num2);
        System.out.println("GCD of " + num1 + " and " + num2 + " is: " + result);
    }
}

Output

GCD of 48 and 18 is: 6

Leave a Reply