Binary Search Algorithm
Binary Search works on sorted arrays and uses divide-and-conquer:
- Find the middle element.
- If it matches the target, return the index.
- If target < middle, search the left half.
- If target > middle, search the right half.
- Repeat until found or range is empty.
Time complexity: O(log n)
Space complexity: O(1) for iterative, O(log n) for recursive (due to call stack)
Iterative Binary Search
public class BinarySearchIterative {
public static int binarySearch(int[] arr, int target) {
int left = 0, right = arr.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2; // Prevents overflow
if (arr[mid] == target) {
return mid; // Found
} else if (arr[mid] < target) {
left = mid + 1; // Search right half
} else {
right = mid - 1; // Search left half
}
}
return -1; // Not found
}
public static void main(String[] args) {
int[] arr = {2, 5, 8, 12, 16, 23, 38, 45, 56};
int target = 23;
int index = binarySearch(arr, target);
if (index != -1)
System.out.println("Element found at index: " + index);
else
System.out.println("Element not found!");
}
}
Output:
Element found at index: 5
Recursive Binary Search
public class BinarySearchRecursive {
public static int binarySearch(int[] arr, int left, int right, int target) {
if (left > right) {
return -1; // Base case: not found
}
int mid = left + (right - left) / 2;
if (arr[mid] == target) {
return mid;
} else if (arr[mid] < target) {
return binarySearch(arr, mid + 1, right, target); // Search right half
} else {
return binarySearch(arr, left, mid - 1, target); // Search left half
}
}
public static void main(String[] args) {
int[] arr = {2, 5, 8, 12, 16, 23, 38, 45, 56};
int target = 12;
int index = binarySearch(arr, 0, arr.length - 1, target);
if (index != -1)
System.out.println("Element found at index: " + index);
else
System.out.println("Element not found!");
}
}
Notes:
- Array must be sorted before using Binary Search.
- To avoid integer overflow, use:
mid = left + (right - left)/2
instead of(left + right)/2
. - Iterative is more memory-efficient; recursive is elegant and easier to read.